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Abstract Higher-level cognition is one of the con-

stituents of our human mental abilities and subsumes rea-

soning, planning, language understanding and processing,

and problem solving. A deeper understanding can lead to

core insights to human cognition and to improve cognitive

systems. There is, however, so far no unique charac-

terization of the processes of human cognition. This survey

introduces different approaches from cognitive architec-

tures, artificial neural networks, and Bayesian modeling

from a modeling perspective to vibrant fields such as

connecting neurobiological processes with computational

processes of reasoning, frameworks of rationality, and non-

monotonic logics and common-sense reasoning. The sur-

vey ends with a set of five core challenges and open

questions relevant for future research.

Keywords Higher-level cognition � Cognitive and

computational modeling � Artificial intelligence �
Reasoning � Problem solving

1 Introduction

Humans are able to perceive their environments, integrate

information into mental models, exchange information, act,

feel, derive new information, and they can learn—they are

prototypical cognitive agents. And their ability to perform

successfully in different domains is what makes them su-

perior over typical specialized AI approaches. But the two

fields, cognitive science and artificial intelligence, have

much in common: Cognition usually refers to an infor-

mation-processing perspective of mental abilities [47]. This

approach gives rise to a fruitful analogy between the hard-

and software of computers and the human brain and mind.

Cognition can be described by computational processes.

Computational processes, including rule-based as well as

artificial neural network models, are the current best ap-

proaches to describe and/or predict cognitive processes.

Several researchers [1, 21] proposed to model human

cognition by production rule systems such as Adaptive

Control of Thought Rational (ACT-R, e.g., [2]).

But what is the definition of higher-level cognition? It

often refers to cognitive abilities like language, reasoning,

planning, and problem solving. In contrast, low-level per-

ceptions like seeing, hearing, etc., are often not considered

to be part of these processes. However, the boundaries are

not strict, interpreting complex visual input can require

demanding higher-level cognitive processes, and seeing for

instance can be influenced by higher modeling processes.

Higher-level cognition is connected to the term complex

cognition. Complex cognition has been defined, e.g., by

Knauff and Wolf [26], as processing of information to

make implicit information explicit or to derive new infor-

mation ‘‘with the intention to make decisions, solve prob-

lems, and plan actions’’. Funke [15] points out that ‘‘this

approach assumes an active and goal-directed information-
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processing by human beings who are able to perceive their

environment and to use their memory. The term ‘mental

processes’ is not restricted to cognitive ones, but includes

motivational and emotional processes at the same time’’.

We will use these definitions to define (and contrast)

higher-level cognition in the following. Hence we propose

to define higher-level cognition by cognitive processes that

contain at least the following four aspects (adapted from

[15]):

1. Processing of information to derive new information to

make decisions, solve problems, or plan actions.

2. It is a goal-directed process; most processes require a

form of attention.

3. Diverse cognitive sub-systems are contained, e.g.,

perception systems, and declarative and procedural

memory; these processes and diverse information

needs to be integrated.

4. Information needs to be interpreted or exchanged (e.g.,

language processes are relevant) and information needs

to be reframed.

Although there are many possible mental processes in-

volved in cognition, they can be broken down into roughly

two aspects: First, how do humans internally represent and

store information? Second, how do humans process the

information, to perform a task, e.g., derive a conclusion in

a reasoning task? In contrast to AI systems that have been

built, the human brain is more a ‘‘black box’’ and many

cognitive functions and their neural implementations must

be ‘‘reverse-engineered’’. Typically, cognitive scientists

perform experiments to have data that either support a

theory or exclude whole classes of theories. Cognitive

theories can be characterized on three levels (inspired by

Marr [28]): The theories can describe cognitive processes

on a purely symbolic level (e.g., by mathematical differ-

ential equations or logic), the theories can be on an algo-

rithmic level (in the form of a computer program), or they

can be on an implementational level (e.g., how are cogni-

tive functions implemented in the human brain). All three

levels can contribute to an understanding of cognition. A

major problem is the symbolic-subsymbolic connection

realized in the human brain: We all perceive cognition as

symbol manipulation, e.g., in language or reasoning terms.

On the other hand, many implementational theories focus

on neuronal networks. How does symbolic reasoning

emerge from neural networks? This grounding problem

poses a great difficulty to modeling cognition.

Cognitive theories can be described as competence and

performance theories. Competence theories try to show

what from specific assumptions and modeling approaches

can follow. Performance theories aim at making predic-

tions about how the average participant may behave with

respect to given answers, typical error, response times,

attention focus, etc. These performance measures can serve

as test criteria for a cognitive theory. Cognition can cover,

as we have seen, many different cognitive aspects. In the

following we will mainly concentrate on reasoning.

2 Cognitive Theories

For all parts of human cognition, from memory over lan-

guage to reasoning, cognitive theories have been developed

[2]. In some research areas cognitive theories excel in

predicting human performance. Other areas of human

cognition are less understood. Let us consider deductive

reasoning with quantifiers, so-called syllogisms. Syllogistic

reasoning has been proposed 2500 years back by Aristotle

and has been investigated for about 100 years from a

psychological perspective [45]. The core problems con-

sisting of two premises and the quantifiers All, Some,

Some not, and None, form 64 problems. At least 12 cog-

nitive theories have been developed during the last hundred

years to explain errors that humans are performing.

A recent meta-study [24] showed that any of the pro-

posed 12 reasoning theories deviates considerably from the

empirical data. In other words, there is so far no cognitive

computational theory for the 64 syllogistic reasoning

problems—that are easy from a computational perspec-

tive—where human performance can be predicted. But the

problem goes further, because general approaches are rare.

There is so far no general or unified theory about human

cognition covering several cognitive subtasks. Best ap-

proaches are cognitive architectures (see next section); they

try to identify common grounds (often parameters) that

should be general. An example is the memory activation

function in ACT-R that represents the decay of information

or the way information is represented and processed. Many

cognitive theories of reasoning can be characterized as

being logical, model-based, probabilistic, or heuristic ap-

proaches [23].

It has been questioned, however, if humans do reason

according to propositional or first-order logical accounts. A

classical example is the Wason selection task [53] that

shows that humans make consistent errors in evaluating the

modus tollens or as a more recent example the suppression

task that shows that humans may reason non-monotonically

[43]. Consequently, recent approaches have focussed on

ternary approaches like Kleene and Lukasiewic logic to

explain humans deviation [11, 43]. Recently, mental

simulation as a more dynamic approach has been intro-

duced [19, 24]. A more extensive description of cognitive

theories from an AI perspective can be found in [47].

Another direction comes from the field of psychometric

artificial intelligence [4, 6, 7]. The goal is to assess artificial

cognitive systems on intelligence tests such as Raven’s
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matrix tests and many other inductive reasoning problems

[20, 36, 40]. Again many systems perform well on specific

domains—a general approach is missing.

3 Cognitive Models and Architectures

The rise of cognitive modeling is strongly connected to

advances in cognitive science and AI. The first emerged

about 30 years ago and covers research about reasoning,

problem solving, language, and perception and provides

the field of research. Research on AI has started at the

Darthmouth conference in 1956 and the interest in mod-

eling theories by computer models grew stronger. The

advantage is obvious: Once conceptually defined, cognitive

theories are algorithmized, theory gaps become visible and

theories can make precise predictions the performance of

humans.

A possible definition for cognitive architectures is that

they are unified approaches implementing assumptions

about our cognitive structure, like working memory, and

how the information is distributed across assumed cogni-

tive modules. Most cognitive architectures have been

strongly influenced by the General Problem Solver (GPS)

that has been proposed and developed by Newell and Si-

mon [33]. Most of the existing cognitive architectures are

implemented as production rule systems such as GPS.

Production rule systems contain production rules and they

consist of condition-action-rules that ‘‘fire’’ (they are

executed). A sequence of such production rules can be

compared to mental processes. The set of these production

rules are called procedural knowledge. Another form of

knowledge is declarative knowledge, it deals with the

representation of facts and knowledge. Examples of such

cognitive architectures are ACT-R 6.0, 4-CAPS, and

CLARION. ACT-R 6.01 as a hybrid architecture [2] con-

sists of psychologically plausible modules for representa-

tion (e.g., visual, aural), goal representation (goal,

imaginal) and buffers. Applications of these models are

learning, working memory, problem solving, and Human-

Computer-Interaction (HCI). SOAR2 (States, Operators,

And Reasoning) [32] can both be used to model cognitive

aspects and to deal with AI problems.

A general criticism is that the existing ‘‘cognitive ar-

chitectures’’ contain too few constraints and that they are

often Turing-equivalent, such as ACT-R [1]. Since cogni-

tive modeling aims at excluding cognitive model classes, a

Turing-equivalent architecture might not provide enough

restrictions.

A recent approach aiming at the investigation of fun-

damental structures of the human mind is CLARION3 [49].

This system provides a modular structure analogous to

ACT-R, where all subsystems are based on neural nets (in

contrast to ACT-R). Restrictions in CLARION are

emerging from this neural grounding. Task specific cog-

nitive processes, e.g., playing Tower of Hanoi or a human

flight simulator, are described by cognitive models. Such

models exist for SOAR (for an overview see [27]), ACT-R

6.0, and others. Hence cognitive models are algorithmiza-

tions of psychological theories.

A different approach are neurally inspired architectures

with one of the most prominent being Nengo [14]. The

simplest representation are groups of neurons and connec-

tion with weights between these neural groups. Nengo is

based on the Neural Engineering Framework (NEF) to

compute the ‘‘appropriate synaptic connection weights’’.

The current models cover visual attention, working mem-

ory, motor selection, and inductive reasoning among others.

The goal of any of these architectures is to make precise

performance predictions for the reasoners, e.g., to predict

the answer of the participants, the time to give answers, and

recently eye movements and brain activations. Simon and

Wallach [41] (cited after [46]) argue that good models and

generative theories should contain several of the following

steps:

1. Product correspondence: This requires that the cogni-

tive model shows a similar overall performance as

human data.

2. Correspondence of intermediate steps: This requires

that assumed processes and steps in the model parallels

separable stages in human processing.

3. Temporal correspondence: This requires that compu-

tational process times (or assumed temporal costs)

parallels reaction and answer times.

4. Error correspondence: This requires that the same error

patterns in the model emerge than in experimental data.

5. Correspondence of context dependency: This is a

comparable sensitivity to known external influences.

6. Learning correspondence: This requires a similar or

identical learning curve between the humans and the

model.

This impressive list already shows that generative theories

can be tested and falsified in a number of ways. The more

cognitive models fulfill these aspects the more cognitive-

adequacy they capture. However, a major problem is that

experimental psychological research aims at the mean

performance of a group of participants. This can distort the

findings. Better models aim at modeling individual per-

formance. To define benchmarks is often not so easy since
1 http://www.act-r.psy.cmu.edu
2 http://www.sitemaker.umich.edu/soar 3 http://www.cogsci.rpi.edu/ rsun/clarion.html
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many cognitive models are domain-specific, i.e., they can

be applied to the field of syllogistic reasoning, planning

with Tower of London, or recognition memory and, hence,

they cannot be applied to other domains as well—in con-

trast to human abilities. So these two aspects may extend

the list of Simon and Wallach.

3.1 Artificial Neural Networks

A different perspective on cognitive modeling are subsym-

bolic models which can be categorized as models on the

implementational level [28]. Artificial neural networks [30]

or connectionist models are inspired by human neural rep-

resentations and they are excellentwith respect to the learning

aspect. Formal neurons are strong reductions of brain neu-

rons. For instance, only the electric potential is modeled, but

not, e.g., the neurotransmitter in synapsis. And the ANN-

architectures are from their structure more regular than real

neurons. Most proponents see connectionism as computation

models and not as models of biological reality. Recent ad-

vances cover also complex cognition problems like the dy-

namic water flow problem [38], and number series sequences

can be solved by artificial neural networks. The basic idea is

to consider such inductive reasoning problems as learning

problems, instead of finding ‘‘intuitively’’ a solution, or

searching a larger space, a third idea is to learn the underlying

function [37]. A disadvantage of an ANN is that there is no

obvious connection to the symbolic level (see above), and it is

more difficult to develop a complexity measure using artifi-

cial networks as underlying computational model.

3.2 Bayesian Modeling

The use of Bayesian cognitive models, i.e. models that are

based on Bayes formulae (e.g., in reasoning) has been

called the ‘‘new paradigm’’ or the ‘‘Bayesian turn’’. The

principle idea is that mental processes are strongly con-

nected to information-processing approaches. Proponents

of these approaches, however, claim that, although the

human mind might learn using Bayesian inferences, that

does not mean that the mind implements Bayesian infer-

ences [51]. Bayesian models can be connected to using

heuristics and reasoning about background knowledge

[35]. This approach has been successfully applied to in-

ductive learning [50], causal inferences [17, 18, 44], and

language processing [8, 54] among others.

4 Employing Automated Reasoning

Cognitive science as the interdisciplinary scientific study of

the mind and its processes includes research on intelligence

and behavior. In the cognitive paradigm, knowledge

representation using methods from AI and computer sci-

ence, the human consciousness and situations of the real

world are described by natural and formal languages as

cognitive processes. The assumption is that there are cog-

nitive processes in the human brain which can be formally

represented together with related knowledge by computa-

tional means.

In order to automatize this reasoning process, several

calculi for automated reasoning have been developed. The

study of automated reasoning [39] as an area of computer

science and mathematical logic dedicated to understanding

different aspects of reasoning helps to develop computer

programs that allow computers to reason completely, or

nearly completely, automatically. The development of

formal logic played a major role in the field of automated

reasoning. In the early years, it concentrated on the de-

velopment of calculi for classical propositional and first-

order logic. Reasoning with the modus ponens or modus

tollens has a direct counterpart in automated reasoning

systems.

Effective reasoning procedures make applications such as

question-answering systems possible. For this, language

knowledge has to be exploited to extract the logical content

of the question. This is, e.g., the procedure in the LogAnswer

system [16]. After that, together with background knowl-

edge, answers can be derived by an automated reasoning

process. Background knowledge is available via online re-

sources like the Wikipedia encyclopedia4 on the one hand

and provided on the other hand by knowledge bases in form

of ontologies like Research Cyc [29], Yago [48], or others.

4.1 Common-Sense Reasoning

In contrast to plain automated reasoning, systems imple-

menting approaches of higher-level cognition must be able

to deal with large knowledge bases, because they exploit

implicit background information and thus must have access

to a variety of knowledge that often cannot be restricted to

a clearly specified and restricted domain. On the one hand,

these knowledge bases are often inconsistent. On the other

hand, they may be incomplete, i.e. not sufficient to solve a

given problem. Thus, in the context of incomplete and

inconsistent knowledge, we still have to reason validly.

This requires mechanisms to draw conclusions even in

cases of incomplete or inconsistent knowledge. This is

even more important for higher-level cognition, since hu-

man reasoning does not strictly follow the rules of classical

logic (see above). It requires a number of different ap-

proaches from abductive and defeasible reasoning, and fi-

nally common-sense reasoning.

4 http://www.wikipedia.org
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According to Mueller [31], common-sense reasoning is

the sort of everyday reasoning humans typically perform

about the world. It allows to derive knowledge about

continuity and object permanence, e.g., if a person enters a

room, then afterwards, the person will be in the room, if

she has not left the room. Additionally, there is no bilo-

cation, i.e., a person cannot be in two places at once. If a

person moves from one location to another, and carries an

object, then the object moves the same way. We have

knowledge about objects, events, space, time, and mental

states and may use that knowledge. All this implicit

background knowledge is part of everyday human rea-

soning and must be added to a cognitively adequate auto-

mated reasoning system.

4.2 Defeasible Reasoning and Argumentation

Theories

We often derive conclusions under the assumption that

nothing abnormal is known, i.e., that we do not have evi-

dence that the conclusion is false. According to Nute [34],

human reasoning often is defeasible in consequence: For

instance, if a reasonable person receives a letter stating that

she had won a million dollars, the first consideration deals

with the question: Is there any evidence that the letter is a

hoax or misleading? And only then the reasonable person

may make plans to spend the money. Sometimes, in ev-

eryday life, we may arrive at conclusions which must later

be retracted when contrary evidence becomes available.

The contrary evidence defeats earlier reasoning.

Defeasible logic programming together with argumen-

tation theory is considered a logic programming formalism

which relies upon defeasible argumentation. It has proven

to constitute a simple—yet expressive—language to en-

code rule-based knowledge with incomplete and poten-

tially inconsistent information. It combines strict logical

rules and defeasible rules. Answering a query in defeasible

logic programming gives rise to a proof for the query, in-

volving both strict and defeasible rules, called argument. In

order to determine whether the query is ultimately accepted

as justified belief, a recursive analysis is performed which

involves finding defeaters, i.e. arguments against accepting

the argument, which are better than the argument (with

respect to a preference criterion). The references [5, 9, 13]

provide a good overview on the field. There are also

ranking theories of knowledge [42].

4.3 Non-Axiomatic Logics

One problem with classical logic formalisms may be that

explicitly axiomatized logic is suitable only for an ideal-

ized situation. The initial knowledge is represented as ax-

ioms, and all solutions to the problems are provided by the

theorems derived by deduction. However, in realistic

situations it must be assumed that only insufficient

knowledge and resources are available. Therefore, Wang

[52] proposes a non-axiomatic reasoning mechanism aim-

ing at artificial general intelligence, which is less anthro-

pocentric than specific approaches from cognitive science.

The theory contains grammar and inference rules. While

grammar rules define the format of the representation

language used in the system by specifying how an ac-

ceptable sentence can be composed from words and

phrases, inference rules define the patterns of valid rea-

soning in each inference step, where certain sentences are

derived (as conclusions) from some given sentences.

5 Current Directions, Projects, and Works

The number of book publications about higher-level cog-

nition is steadily rising and contains many popular best-

sellers [3, 22, 25]. This shows the high interest of re-

searchers and of the society in higher-level cognitive pro-

cesses such as reasoning and decision making. New

research paradigms and approaches concentrate on com-

bining methods from different fields, questioning assump-

tions, and investigating complex tasks.

The recently ended SFB/TR 8 Spatial Cognition5 has

approached the question of the ‘‘acquisition, organization,

and utilization of knowledge about spatial objects and en-

vironments, be it real, virtual, or abstract, human or ma-

chine’’. It has combined methods from AI, cognition,

linguistics, and robotics. The findings covered many re-

search areas, lead to exciting collaborations and findings

about the way human represent reasoning.

Another interesting question is whether past research

has considered the wrong frameworks while evaluating

human answers. As outlined above, humans do sig-

nificantly deviate from predictions of classical proposi-

tional logic. So, if we evaluate human reasoning with

respect to propositional logic then human reasoning can be

considered erroneous. If, however, human answers are

compared to predictions made by Lukasiewic logic than the

answers do not deviate strongly [10–12]. Such questions

about the underlying framework is investigated in the SPP

1516 New Frameworks of Rationality.6 It covers this in-

terest by combining research interests of philosophers,

psychologists, and computer scientists to understand and

identify implicit assumptions and characteristics about

human reasoning especially concentrating on inductive

domains.

5 http://www.sfbtr8.spatial-cognition.de
6 http://www.spp1516.de
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Connections between higher-level cognition and sym-

bolic computation models and the neural implementation

grow stronger. Cognitive and computational models grow

more complex, for instance, Spaun [14] consists of 2.5

million neurons and the trend increases to build realistic

neural models of the human brain, e.g., in the Human Brain

Project7 of the EU and the BRAIN Initiative of the US-

American National Institute of Health.8 These investiga-

tions can have consequences on a neuronal foundation of

higher-level cognition and in general to research investi-

gating Mind-Brain-Mapping. Connected is the question if

we can link our brains to external devices.9

6 Conclusions

Higher-level cognition and computation is a vibrant, multi-

layered field and covers many other disciplines from psy-

chology, cognition, computer science, artificial intelli-

gence, and robotics. Theories and models about higher-

level cognition can cover symbolic, connectionistic or hy-

brid models and include one or several modeling levels.

Although many models are specific for some cognitive

tasks architectures aim at combining theories towards a

unified approach of cognition integrating several cognitive

aspects, from working memory over perception to problem

solving and language. AI has provided many ideas, ap-

proaches and tools to describe human higher-level cogni-

tion approaches. The advantage of implemented

algorithmic theories is that they make precise predictions,

can be implemented in artificial agents, can be evaluated,

combined and improved. Despite a deeper understanding of

human cognition and many exciting results some chal-

lenges remain. Some of these important challenges can be

characterized as following:

1. What is the appropriate cognitive-adequate represen-

tation for symbolic processes in human cognition?

2. How can the symbolic-subsymbolic gap be overcome?

What can we learn from the neural representation for

higher-level cognition?

3. How can cognitive theories be adequately assessed?

What could be general benchmarks?

4. Can cognitive models be turned into effective compu-

tational theories and, if yes, with which formalism?

5. What makes embodiment so central for human cogni-

tion? What are possible consequences for cognitive

systems and artificial intelligence?

These five questions (and possibly many others) can lead to

important improvements to build better cognitive systems,

to provide a deeper understanding of human psychology

and the interplay with neurobiological processes and helps

us to understand the particularities of human cognition.
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